
 An Integrated Tool Environment for DoD Product Line Engineering

 Christopher P. Fuhrman
Institute for Software Research

1000 Technology Drive
Fairmont WV 26554 USA

 Nancy Solderitsch
ProLogic, Inc.

1000 Technology Drive
Fairmont WV 26554 USA

 Sherif Yacoub and Hany Ammar
Department of Computer Science

and Electrical Engineering
West Virginia University,

Morgantown WV 26505 USA

 

ABSTRACT

 We propose an environment that supports the development of
software products using a product line engineering approach in
the domain of embedded weapon fire control systems. The
environment is a set of integrated tools that facilitate the vari-
ous processes of product line engineering. Some of the tools
are commercial, off-the-shelf (COTS). Some tools are pro-
posed as aids to integration of the environment; other experi-
mental tools that are aimed at automated conformance check-
ing using design patterns are discussed.

 Keywords: product line engineering, software reuse, COTS
software, CASE tools, embedded systems, UML, design pat-
terns, software architecture frameworks.

1. INTRODUCTION

 In the domain of weapon/fire control systems, embedded soft-
ware will be a key cost driver in the next generation. The om-
nipresence of embedded systems in today’s market and the
quality of requirements that these systems are expected to
meet, put a great deal of pressure to bear on the techniques
used to develop these systems. It has been recognized that de-
velopment of standardized product line (or reference) archi-
tectures with concomitant infrastructure technology, tools, and
design methodology is an enabler to control software cost and
complexity.

 In its infancy, software engineering was concerned with the
development of single software systems. To develop each sys-
tem, an organization must invest in analyzing requirements,
designing of software architectures, documenting, planning of
schedules, testing, etc. As organizations began to develop mul-
tiple software systems, it became evident that, by minimizing
the redundant work done in software development of multiple
products, significant gains could be made. This is the basis
behind the idea of software product line engineering (PLE).

 Through a Small Business Innovative Research (SBIR) grant
with the U.S. Army, we have begun a case study of an effort
involving PLE. This PLE work involves the development of a
limited set of software products that are part of the Crew Sta-
tion Decision Aids of the Crusader—the US Army's next-
generation cannon artillery system. The limited set of software
products is associated with terrain mapping. The goal of this
study is the development of standardized infrastructure tech-
nology, tools and design methodology, an Integrated Tool En-
vironment (ITE), for the management and control of cost and
complexity of software used in embedded combat vehicle and
indirect fire weapon applications.

 We also consider constraints imposed on the technical archi-
tecture of the software products. Even in some general cases,
software products must conform to guidelines imposed by the
market for which they are developed. In the specific case of
software developed for the US military, guidelines might in-
clude the Defense Information Infrastructure (DII) Common
Operating Environment (COE) [1] and the Joint Technical
Architecture (JTA) [2].

 We propose an Integrated Tool Environment (ITE) that facili-
tates the processes of product line engineering, but specifically
in a DoD context. We consider some COTS tools for some of
the processes as well as methods for integrating them into the
ITE. Finally we discuss using design patterns as a means to
extend the ITE to both support DoD guidelines and to over-
come some integration challenges.

2. PROCESSES IN PRODUCT LINE ENGINEERING

 The product line software development environment [3] in
Figure 1 consists of several levels of engineering. At the Enter-
prise Engineering level, management looks at all engineering
within the organization and the products created.

 At the Product Line Engineering level, technical staff considers
the product lines to understand and codify the commonalities
and variances within and across product lines. Domain engi-
neering products representing these commonalities and vari-
ances become assets available for reuse in the evolution of the
product line. A technical architecture would be one of the do-
main-engineering products.

 The Asset Management level provides management for the
product line assets. At the application level, the organization is
creating products using assets created through enterprise and
domain engineering, and those products also become assets
available for reuse in the product line. Asset management is a
necessary part of these life cycles, in that it manages the enter-
prise and domain-specific assets for use in the application en-
gineering that takes place.

 The focus in our case study is on the Product Line Engineering
and Asset Management areas. The Product Line Engineering
level lists a number of activities to be performed: Product Line
Scoping and Identification; Domain Analysis; Product Line
Architecture Development; Infrastructure Development. In our
case study the Product Line Scoping and Identification as well
as the Domain Analysis steps have already been performed.
While it would be a good idea to document these steps, it is not
crucial if the group is small and the product line well under-
stood by participants. The focus of this project is in Product
Line Architecture and Infrastructure Development.



 
Application Engineering

Asset Management

Product Line Engineering

Product Line
Architecture
Development

Infrastructure
(Asset)

Development

Domain
Analysis

Product Line
Scoping &

Identification

System Design
System

Implementation

System
Requirements

Analysis

System-Specific
Planning &

Scoping

Legacy
Systems

Enterprise Engineering

Operational
Planning

Enterprise Architecture Planning

Financial
Planning

Figure 1—Overview of product line engineering

 The Software Engineering Institute defines Product Line Ar-
chitecture as a “description of the structural properties for
building a group of related systems (i.e., product line), typi-
cally the components and their interrelationships. The guide-
lines about the use of components must capture the means for
handling variability discovered in the domain analysis or
known to experts. (Also called a reference architecture)” [4].

 Infrastructure Development refers to the process that develops
the components, software, hardware, documentation, etc. that
become the asset base for the product line.

3. INTEGRATED TOOL ENVIRONMENT

 Figure 2 shows how the individual parts of the Integrated Tool
Environment will support Product Line Engineering processes.
The Product Line Scoping & Identification and Domain Analy-
sis processes have been completed for our case study, and the
basic tool support for these processes is a repository to store
information from Legacy Systems and the processes. The
Scoping & Identification and Domain Analysis processes are
well documented by the Army Reuse Center. The group in-
volved with the case study is actively developing a scalable,
evolvable product line architecture, and the infrastructure—the
actual assets that can be used to build new products. The ITE
will provide active tools to support these activities.

 Infrastructure (Asset) Development

 There are several individual contractors responsible for devel-
oping the various components of the Crew Station Decision
Aids system. One of the goals of this study is to develop a
standardized infrastructure technology. To achieve this goal,
some decisions had to be made initially about the design envi-
ronment and preliminary technical architecture. It has also
been determined that the program will use an object-oriented
approach to software development. While product line engi-
neering does not require the use of object-oriented techniques,
the decision to use the OO paradigm across the development
process helps simplify the development of methodology and
tools.

 

Product Line Engineering Processes

Product Line
Architecture
Development

Infrastructure
(Asset)

Development

Domain
Analysis

Product Line
Scoping &

Identification

Rose WithClass

Generators

System Architect

Integrator
Architecture Assistant

Standards Conformance
Metrics

Asset Management Infrastructure

Legacy
Systems

Product Line
Architecture

Assets

MOREplus

Data Dictionary

Figure 2—Proposed Integrated Tool Environment

 The group responsible for the guidance of the software devel-
opment in the case study has determined that the main design
tool will be Rose (Rational Software, Inc.), the leading state-of-
the-shelf, object-oriented analysis, modeling, design, and con-
struction tool. Rational had a major role in the development of
the Unified Modeling Language (UML), which is fast becom-
ing the standard notation for object-oriented software archi-
tectures.

 Commercially available design and development tools are op-
timized for the tasks they perform. There are strategic alliances
between some vendors that provide some integration, but not
for all. In particular, the individual tools have repositories that
are designed for their information, and to support their design
processes. These repositories do not handle other tools’ infor-
mation well, and do not present an integrated picture of the
information to the user. Attempts to provide common data
repository infrastructure, e.g., Portable Common Tool Envi-
ronment (PCTE) [5], Common Ada Programming Support
Environment Interface Set (CAIS) [6], have failed to attract
commercial interest.

 UML

 The Unified Modeling Language (UML) has become the in-
dustry-standard language for specifying, visualizing, con-
structing, and documenting the artifacts of software systems.
UML simplifies the complex process of software design, mak-
ing a blueprint for construction.

 On the other hand, we have two points of concern with respect
to UML. First, although UML is a standard and is supported by
many of the tools that could become part of the ITE, it is im-
portant to realize that many of these tools support variant
UMLs and there is no UML interchange standard. The
interoperability of multiple tools claiming to support UML can
only be verified when the integration is performed. Second,
modeling in UML does not guarantee that combinations of
components will work. The use of design patterns and frame-
works for product line architecture definition is how we intend
to assure compatibility of collections of components. This is
described in the subsection below on Integrators.



 Asset Management

 The core of the ITE will be a user-oriented repository of prod-
uct line information. The commercial product MOREplus
(MountainNet, Inc.) will be used to catalog and group infor-
mation on different aspects of the Crew Station Decision Aids
product line. MOREplus is a web-based front end to an Oracle
database that has been optimized to support product line re-
pository activities. MOREplus is used by a number of commer-
cial and Government agencies, including the Defense Informa-
tion System Agency (DISA) and the Army Reuse Center
(ARC). MOREplus will be modified and ‘add-ins’ integrated to
support the automatic generation of meta-data on components
for the repository from the UML tools used in the system de-
sign and development (e.g., Rational Rose, MicroGold Soft-
ware’s WithClass).

 Examples of information to be stored in the ITE repository
include

• data dictionary information (from the Crew Station Deci-
sion Aids product line);

• product line architecture information;
• assets, e.g., designs, application program interfaces

(APIs), documentation, links between assets, legacy sys-
tems; and

• pointers to external information, e.g., JTA-A, DII COE
home pages, etc.

 This information will be entered into and extracted from the
repository in the course of enacting the development process.
This process, focusing on Product Line Architecture and Infra-
structure development, will coordinate with and complement
the processes maintained by the Army Reuse Center. The ITE
will provide automated support, integrated with the develop-
ment tools and MOREplus, to enter, link and extract the infor-
mation.

 Integrators (Architecture Framework and Patterns)

 At a later phase of our work, the focus will be on integrating
architecture framework and patterns concepts and tools into the
ITE. One aspect of this will be to provide automated support
for checking compliance with the Joint Technical Architecture
and the Defense Information Infrastructure (DII) Common
Operating Environment (COE). Similarly, as described above,
this method can be used to achieve better tool integration using
the UML.

 Using the results obtained in work concerning pattern-oriented
frameworks [7], we intend to augment the ITE with experi-
mental tools. These tools would facilitate the generation of
applications using design patterns such that the applications
can conform to particular technical architectures. The results of
this technique are promising in limited cases [8], and we shall
investigate how it applies in a broader sense.

 Commercial tools supporting framework and patterns are
evolving rapidly. We will eventually determine which ones
should be integrated into the ITE. Finally, we will consider
appropriate product line engineering metrics and incorporate
support for collecting these metrics into the ITE.

 Generators

 As discussed above in the section on Asset Management, addi-
tional tools are proposed that can automatically generate the
meta-data about UML design artifacts for the ITE repository.
The artifacts remain in their tool repositories; only the meta-
data resides in the ITE Repository.

 Both Rose and WithClass have Virtual Basic for Applications
(VBA) integrated into them. At this time, it appears that using
VBA to generate the meta-data will provide a tool framework
that can be used in both commercial tools, and possibly in oth-
ers tools.

 Additional tools are proposed for development that support
architectural connections (e.g., generation of APIs that con-
form to Army Weapons Systems Technical Architecture
Working Group (WSTAWG) standards), and other develop-
ment artifacts that correspond to architectural constraints and
rationale.

4. CONCLUSIONS

 In this work we present an Integrated Tool Environment (ITE)
that is aimed at standardizing and facilitating the processes of
software product line engineering in the domain of embedded
weapon fire control systems. We have discussed how several
COTS tools can be used in the environment, and we have pro-
posed tools used for (1) the generation of meta-data and APIs
conforming to DoD standards and (2) the automated integration
of the software into technical architectural frameworks using
design patterns.

REFERENCES

 [1] Defense Information Systems Agency, “Defense Informa-
tion Infrastructure Common Operating Environment, Ver-
sion 3.1, Baseline Specifications,” Joint Interoperability
and Engineering Organization, Defense Information Sys-
tems Agency, 29 April 1997.

 [2] Department of Defense, “Joint Technical Architecture,
Version 2.0,” U.S. Defense Information Systems Agency
(DISA), 26 May 1998.

 [3] Army Reuse Center, “An approach for implementing an
object-oriented repository for Army Technical Architecture
Models,” U.S. Army, August 1997.

 [4] P. Clements and L. M. Northrop, “A Framework for Soft-
ware Product Line Practice-Version 1.0,” Software Engi-
neering Institute, September 1998.

 [5] ISO/IEC 13719-1:1998, “Information technology -- Port-
able Common Tool Environment (PCTE) -- Part 1: Ab-
stract specification,” 1998.

 [6] DOD-STD-1838, “Common APSE Interface Set (CAIS),”
October 1986.

 [7] S. Yacoub and H. Ammar, “Towards Pattern Oriented
Frameworks,” to appear in Journal of Object Oriented
Programming JOOP, 1999.

 [8] S. M. Yacoub and H. H. Ammar, “The development of a
client/server architecture for standardized medical applica-
tion network services,” presented at IEEE Symposium on
Application-Specific Systems and Software Engineering
Technology (ASSET'99), Dallas, Texas, USA, 1999.

 




